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1. Introduction

The recent success of characteristic-based upwind differencing on structured meshes has spawned

significant research into adopting such methods for use in unstructured adaptive mesh flow

solvers [1-4]. Several basic approaches for the construction of characteristic based unstructured

flow solvers have evolved in recent years. To first order, the support Stenc.:13 employed in most of

these methods are similar in that they rely only on next-neighbor information in a manner which

mimics first order structured schemes. The essential difference in the design of these methods

lies in their extension to higher order spatial accuracy.

One approach towards obtaining higher order begins with constructing what is essentially

the structured difference stencil on the unstructured mesh. References [2,4], for example, use

either Harten's modified flux approach [5] or van Leer's MUSCL [6] reconstruction to obtain

higher order accuracy. Such schemes typically make use of one additional point beyond the

nearest neighbor in their difference stencils. Passing this information through the unstructured

mesh is the essential challenge faced in their design and implementation. This noncompactness

introduces additional complexity into the methods and usually requires additional storage to

overcome. A main benefit of this approach is that the resulting schemes generally retain the

favorable convergence, robustness, and accuracy properties associated with upwind schemes on

structured meshes [2].

A second technique was introduced by Ref. [ 1] using a centered approximation for estimation

of the slope within each control volume, and thus obtains higher order accuracy without informa-

tional inquiries beyond the nearest neighbor. The Green's theorem approach adopted by Barth's

linear reconstruction (1] essentially degenerates to the Fromm scheme in one-dimension [7].

Variations on this theme have been proposed by Ref. [3] and others. Additionally, the concept of

using a nearest-neighbor based slope estimation was immediately generalized to use least squares,

constrained least squares, and higher-order procedures [8-10].



Relying only upon next-neighbor information maintains a compactness comparable to central

difference based schemes and permits the use of edge-based - and other compact - data

strucres. A main strength of this class of methods, is that they avoid the ambiguities associated

with the mapping of structured mesh based difference stencils onto an unstructured mesh and data

structure [11].

A second important strength stems from the divestment of the gradient calculation from

the stencil associated with the Riemann solver. The method requires only a best estimate of

the solution gradient within each control volume, and while the surface integral used in linear

reconstruction still suffers on poor quality meshes, more elaborate gradient estimations may not.

Such procedures may provide dramatically more reliable gradient estimates and suggests the

possibility of constructing schemes with much greater tolerance for poor quality meshes. This

point becomes increasingly important when considering viscous simulations [12]. In such cases,

accurate evaluations of the second derivatives often place severe restriction on the quality of

acceptable meshes, and the high aspect ratio cells necessary to resolve the stiff physics of high

Reynolds number viscous flow may actually hinder accurate gradient estimates. One goal of the

present work is to examine the scheme behavior in detail on the right triangular meshes often

employed to resolve viscous layers.

An abundance of research in the recent literature has attempted to capitalize on the promises of

various reconstruction techniques. Nevertheless, outstanding questions concerning convergence,

accuracy, robustness, and monotonicity remain. The present effort focuses on the simulation of

inviscid flow with Roe's approximate Riemann solver. Tume integration is achieved via a three-

stage modified Runge-Kutta method. The investigations are specifically designed to examine

the accuracy, stability and expense of the various reconstruction algorithms and comparisons

with structured MUSCL schemes are provided wherever possible. The methods are examined on

meshes consisting of quadrilateral, right triangular, and equilateral triangular elements to examine

the effects of polygon shape on convergence and accuracy. Both Green-Gauss and least squares

2



reconstructions are considered using Barth's original Limiter [1], Venkatakrishnan's limiter [7]

and a new directional limiter which is presented in Section 2 of this paper.

The investigations are designed to independently examine the methods in a controlled setting.

In addition to several well known numerical test cases, these examples also include problems

for which there exist closed form solutions to the 2-D compressible Euler equations. Such cases

facilitate quantitative statements about scheme performance and order of accuracy.
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2. Theoretical Model

The governing equations are written in flux-integral form:

IL !UdA= Uf . S (2.1)

where 0 is the state vector of conserved variables and F is the tensor of flux density containing

the inviscid components of the Navier-Stokes equations. This equation may be discretized on an

unstructured mesh containing polygons of arbitrary degree. Figure I shows a small region of a

typical mesh with triangular elements. The present work adopts a node-based approach and thus

the flow variables reside at the mesh vertices. The solution procedure for Equation 2.1 consists of

reconstruction, flux quadrature and updating of the state variables. The flux quadrature requires

evaluation of a divergence operator while the reconstruction step necessitates estimation of a

gradient.

2.1 Formulation

We begin by deriving the edge formulas for the reconstruction as in Ref. [13]. This is useful

since the analysis contained in subsequent sections will examine many of these expressions and

assumptions in significant detail. In Figure 1, the perimeter of the polygon formed by the set of

triangles containing Vo as a common vertex forms the closed path of integration S. The polygon

enclosed by this boundary has an area, A, equal to the sum of the areas of the figures which share

the common vertex Vo. Thus, the integral path for any given point is chosen to be that described

by joining all adjacent points as defined by the edge to edge connections. Applying Green's

theorem in the plane then provides an evaluation of the gradient of a passive scalar 4 at the vertex

Vo,

I /Av dA = is J> dS (2.2)
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Figure 1: Unstructured triangular mesh surrounding vertex Vo
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where A denotes the outward facing local unit normal to S. On the multifaceted control volume

shown in Figure 1, the trapezoidal rule provides a discrete analog to Equation 2.2 and is exact if

€ is linear. The contribution of each edge VV, to the gradient of 4) at VO is then:

, + O) nVV, (2.3)

where i,j vary cyclically, i, je {l,2,..., 6} and nv,.i, denotes the surface normal vector to edge

Vi Vj. Following Ref. [ 13], separation of the cell based formula in Equation 2.3 into contributions

from each of the edges incident upon Vo permits reexpressing the integration on an edge-basis, and

so, the trapezoidal evaluation of the path integral in Equation 2.2 may be equivalently expressed

in terms of contributions associated with each node. For a vertex V. on the perimeter of the cell

surrounding vertex VO, this term is

Sv, (iivy, + iv, v,) i, k are vertices adjacent to j (2.4)

To further facilitate application in an edge-based setting, the vectors in Equation 2.4 may be

written in terms of edges of the centroid dual without changing the actual path of integration S in

Equation 2.2. Ref. [8] points out

nvy, + fvyv = 3 ncO•ICOjk (2.5)

where Cijk denotes the centroid of the triangle formed by vertices Vi, V1, Vk. The quadrature of

Equation 2.2 is evaluated with Equations 2.3 through 2.5 to obtain:

LV70dAJ =)76dS =E O. 3 4vi~c0ijc~ (2.6)A sjel .... V 8

with i, k once again denoting the vertices adjacent to j. Hence, the gradient at Vo may be written

as 3 1
(VO)v0 = A l4)vincoicOik (2.7)

j 6{v,.....,}
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To further simplify the operations, Equation 2.7 can be made symmetric with respect to the

contribution of the vertices associated with each edge. This is achieved by noting that if the

surface vectors of the control volume sum to zero, the addition of a constant (I 0Vo) to the above

formula does not affect the gradient or divergence. Thus, Equation 2.7 may be recast as
3 1(28

(V7)Vo = A 2 (Z i + 4,Vo) ncOjCo, k (2.8)
je{VI,..., 6 }

Finally, since the area Am,, of the median dual is exactl) one third that of S, Equation 2.8 becomes:

1VO IO (Ovi + OVo) ncO•,cOk (2.9)(V~v =A"•j,{v,,.. .,,6}

which is the final formula used in the reconstruction.

Minimum-energy or "least squares" reconstruction provides an alternative method for es-

timating the solution gradient within each cell. This reconstruction process seeks to find the

gradient vector which minimizes the least square error with respect to the integral cell averages

of the distance one neighbors. The procedure involves solution of a (usually) overconstrained

system of linear equations. The algorithm can be implemented on an edge-by-edge basis at a cost

comparable to that of the Green-Gauss formulation. Details of the least squares procedure may

be found in Refs. [9], [14], [15] and [16]. As with the Green-Gauss gradient estimation, the set

of support vertices for any node includes all distance one neighbors of that node. However, the

least squares process generally deemphasizes more distant data as compared to the Green-Gauss

method.

Figure 2 contains a quadrilateral, right triangular, and a (nearly) equilateral triangular mesh.

This figure displays not only the physical mesh, but also the median duals of each tessellation.

These three meshes will be a basis for many of the investigations which follow. In considering

the application of Equation 2.9 to unstructured meshes containing polygons other than triangles,

consider, for example, its evaluation on quadrilateral cells depicted at the top of Figure 2,

(V7O)Vo= Am 2 { O1VC0n 3 + 4v 3fnco1,,c,+
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Figure 2: Physical mesh and median dual for quadrilateral, right triangular and equilateral

triangular tessellations showing support for gradient calculation at control volume

surrounding node V0.
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kvsiicwcow- + ovfcocoz } (2.10)

where the contribution of 4vo has been explicitly cancelled. Since the relationship in Equation 2.5

is unique to triangles, this formula corresponds only to a midpointfevaluation of the line integral

on the dotted path shown in Figure 2. As a result, some of the favorable properties associated

with the trapezoidal integration formula have been sacrificed and slightly less tolerance to mesh

irregularities may be expected when using the midpoint formula on quadrilateral control volumes.

Once the gradients of the conserved quantities are known, the scalars may be reconstructed

throughout the cell:

(X, Y/) = OVo + V " -" (2.11)

where F is a general vector pointing from Vo to a point (z, y). However, such a procedure will

not always yield monotonic behavior. Consequently, a limiter * is employed to reduce the slope

where necessary.

O(X, y) = Oi + * V7 oj" F 0 * < 1 (2.12)

Taking W identically equal to zero degenerates the algorithm to first order.

2.2 Limiters

Barth's [1] original slope limiter is a scalar computed by considering all edges incident upon VO

and applied directly to v'k. Let 0,,,, be the reconstructed value without limiting at the median

point V,,, of edge VoVI using the gradient at VO.

01-,M = Ovo + V•lv0 • rvovy (2.13)
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Defining 0... =max(Ovo, )v), 4•mi = min(ovo, Ovj), A0". ' = O)a 'A 1o,A',i,. = ,O-.oin'V,

A2 = ,,-4)v., the scalarf o. associated with the gradient at Vo due to edge VoVi is

fmin(lA'rn) f&>
*oj= rin(1, ' if A 2 < 0 (2.14)

1 if A2 =0

Sis constructed from the various J0j values: ' = min(WOj) where j scans all vertices joined

to Vo. This method thus reduces the gradient in all directions equally and pushes Equation 2.12

toward first order in all spatial directions. Such "scalar" limiting reduces both the normal and

tangential components of the gradient and results in a relatively dissipative process.

This observation suggests that a less dissipative limiter may be constructed by limiting only

the component of V 0 along the surface vector associated with each edge. A "directional" limiter

may be defined in which * does not act isotropically. We begin by resolving the gradient into

components normal (fi) and tangential (?) to an edge of the centroid dual.

r 7 = ")(2.15)

%V is computed in a manner similar to that described above but is now applied only to the component

of the gradient normal to the edge of the dual.

V 4 = W((VO" -)f) + (v -4) (2.16)

The limited gradient still ensures a new maximum is not created along the edge and yet it now

avoids unnecessarily degrading the tangential component of the slope.

In an attempt to further reduce the severity of limiting, a face-based implementation of this

directional limiting was examined. With this approach, the limiting is performed locally for each

face separately without influencing the gradient stored at the nodes. Thus, the limiting at any one

face of a control volume on the dual mesh occurs independently of any limiting which may be

necessary on the other faces. This procedure is analogous to that on a structured mesh where the

10



limiter is applied sequentially in the mesh directions, The process does not preserve the mean of

the function value within each cell, but can dramatically diminish the number of flux calculations

which invoke the limiter. This face based approach may increase storage requirements somewhat

since the limiter must be computed on an edge-by-edge basis. Results with this implementation

are unsatisfactory when used in conjunction with Barth's original limiting procedure, and alt

monotone solutions are produced with low absolute error in one dimension, multidimensi.,al

results are erratic. "Face-based" limiting was not investigated in conjunction with other limiting

procedures and is not considered further within this work.

Venkatakrishnan [7] recently proposed a new limiter designed specifically to enhance the

convergence properties of the base scheme. This increase in convergence comes at the expense

of strict monotone behavior, as the new (smooth) limiter permits small local overshoots or

undershoots in the discrete solution. This limiter may be expressed as:

Z2i 2A 2,2AIAwm2+ if A2 >0
*Oj A 2 .t.2&22 1l,.I&2-e (2.17)

2 2A7 +AZrnina2.-1 if A 2 < 0

Here, e is a small number to prevent division by zero while 9 is chosen to be a variable that

controls the degree of limiting and depends on some estimate of mesh scale (92 = (KAz) 3). Ax

in this formula is defined locally as the diameter of the largest circle which may be inscribed into

a particular control volume.

2.3 Flux Quadrature

The divergence operator required for the flux quadrature of Equation 2.1 is closely related to the

gradient and consequently follows a similar formulation for each component of the equation. The

fluxes are computed in the present work with Roe's flux-difference split method at the midpoint

of each edge. First, the state of the flow on either side of the midpoint of each edge is constructed

11



from the known values of the state at each node and the limited gradients computed with the above

procedure. The flux function is then evaluated and appropriately scattered and accumulated to

form the solution change at each node.

12



3. Results and Investigations

The investigations examine issues of accuracy, convergence and efficiency with respect to variation

in the limiter, type of gradient estimation and the degree and quality of the control volumes in

the discretized domain. These studies are conducted against a backdrop of widely computed

numerical test cases and closed form analytic solutions to the governing equations. In an effort to

ensure that the conclusions drawn are general in nature, the numerical examples consider a variety

of smooth and nonsmooth internal and external flows. Wherever possible, efforts are made to

compare the unstructured results with those from a structured Roe/MUSCL solver.

3.1 Convergence and Efficiency

Supersonic internal flow through a channel with a 4% circular arc bump provides an initial

assessment of the convergence properties of the various methods. Convergence behavior shows

very little dependence upon the reconstruction procedure and results are only presented using

Green-Gauss.

Figure 3 introduces this example through density contours showing the three tessellations of a

65 x 17 mesh. This widely computed test case considers Mach 1.4 freestream flow which enters

the duct and sets up an inviscid shock reflection pattern within the domain [17). The meshes

shown in Figure 3 consist of quadrilateral, right triangular, and equilateral triangular elements,

and the cases were computed with both Ist order (V -= 0) upwinding and linear reconstruction

with all three of the limiters outlined in Section 2.2.

All the cases were run at a CFL of 0.75 with local time-stepping, and on all the meshes, the

diffusive character of Ist order upwind solutions is apparent. While all of the methods capture

the overall lambda shock structure within the duct, the resolution of the interaction region near

the trailing edge permits discrimination among the highor order discrete solutions. On each of

13
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the meshes, for example, the directional application of Barth's limiter improves the resolution of

this region considerably over the scalar implementation. This is consistent with the observation

alluded to in Section 2.2, where it was suggested that limiting only the component normal to the

control volume face would result in a less dissipative operator.

Figure 4 shows convergence histories in the LI norm for this case on all three meshes. All

of the examples with Venkatakrishnan's limiter used a value of the free parameter (K) of 2.0.

On both triangular meshes, variation of this parameter by more than about -0.5 resulted in poor

convergence. Convergence behavior on the quadrilateral meshes did not begin to degenerate until

this parameter was increased beyond 5.0.

3.1.1 Convergence

Looking strictly at the convergence histories it would at first appear that neither Barth's original

limiter nor the directional limiter allow the calculations to converge convincingly. However,

an examination of the contour plots at several points in the convergence history revealed that

these fluctuations manifest themselves only as small amplitude wiggling of the contours about

a steady state as has been reported by other investigations (7]. For the directional limiter, the

fluctuations are about an order of magnitude smaller and perturbations of the contour lines are not

immediately evident (although undoubtedly there). This is consistent with the results displayed by

the convergence histories. The directional limiter enhanced convergence by roughly an additional

order of magnitude, obviously indicating less activity.

One plausible explanation for this behavior views these fluctuations in the convergence his-

tories as the results of sporadic firing of the limiter, thus preventing absolute convergence.

This assertion is further supported by the work of Ref. [7], where the free parameter (K) in

Venkatakrishnan's limiter was introduced to prevent the limiter from prematurely reacting to

slight oscillations. In the present examples, incorporation of this tolerance facilitates convergence

to machine zero on all three meshes (32-bit machine). The directional limiter displays behavior

15
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similar to that of Barth. However, in all of the cases, the fact that it only retards one component

of the gradient results in somewhat better convergence since the limiting is less severe. This issue

will be revisited in the next investigation, where the behavior of each of the limiters is mapped

out in detail.

3.1.2 A Note on Efficiency

As a final note, it is worth mentioning that while all three meshes require roughly the same number

of iterations to converge, the calculations on the triangular meshes were 50% more expensive in

both memory and time than those on the quadrilateral meshes. This follows since the scheme

proceeds on an edge-by-edge basis and six edges (instead of four) are incident upon each vertex

in the interior of the mesh. In three dimensions, a typical interior vertex has six incident edges on

hexahedral meshes, while a corresponding vertex will have approximately 12-14 incident edges

on a tetrahedral mesh. Thus, about 2 to 2.5 times times the storage will be needed if a tetrahedral

mesh is chosen. The hope is, of course, that the additional edges and flux evaluations in triangular

and tetrahedral domains may enhance the wave propagation within the discrete domain and lead to

more accurate numerical solutions. Nevertheless, an examination of Figure 3 does not reveal any

obvious benefit stemming from the additional edges present in the tessellation, and it is difficult

to justify the additional expense based strictly upon accuracy arguments.

3.2 Order of Accuracy and Absolute Error

3..1 Supersonic Vortex

While the example in the previous section gives some basis for comparing the methods, quanti-

tative measurement of the order of accuracy and discretization error associated with each scheme

is best performed on a test case for which an exact, closed form, analytic solution exists. Exami-

17



nation of a two dimensional supersonic vortex provides just such an opportunity. Since this is a

shock free compressible flow, the measured order of accuracy is not corrupted by limiter action

near shocks and the behavior will correspond to what onc may expect of each method in smooth

regions of the flow. Using this case as a diagnostic tool permits direct examination of the effects

of polygons of various shapes and degrees, and also provides an opportunity to study the tolerance

of the methods to poor quality meshes.

The inviscid, isentropic, supersonic flow of a compressible fluid between concentric circular

arcs presents a flow in which the velocity varies inversely with the radius. This flow is a particularly

useful test case for upwind methods since the numerical solutions must propagate infinitesimally

weak waves accurately to perform the large turning without disrupting the radial flow distribution

or introducing shocks. This flow is also of some practical interest as it has been used as a segment

of the flow distribution in designing passages for the supersonic blading of compressors and

turbines (18,19], as well as for a supersonic through-flow fan stage [201.
The expression for density p as a function of radius r is given by:

p(r)= [+ _ {- (L_)}] (3.1)

where MA and r, are the Mach number and the radius at the inner arc. To evaluate the order of

accuracy of each of the methods, a series of discrete solutions to this test case is obtained on the

quadrilateral as well as on equilateral and right triangular meshes. For each tessellation, solutions

are sought on a set of three telescoping grids with 31 x 6, 61 xl1, and 121 x 21 nodes. The Mach

number at the inner radius r, is specified at 2.25 and the outer radius r. at 1.384 ri. Figure 5 shows

the three sets of regular meshes used in the simulation. For these regular meshes, the aspect ratio

is of order 1.

The simulations are initiated by releasing the inlet profile into a nearly evacuated duct and

converged to steady state. Figure 6 displays pressure contours (inc.= 0.25) resulting from the

computations on the medium meshes. The extreme diffusivity of the first order schemes again
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becomes apparent in these plots, and the pressure in the first order simulations drops dramatically

along stream lines as the flow proceeds around the duct. Some evidence of dissipation is also

evident in the higher order discrete solutions but it is not nearly as pronounced as in the first order

cases. Convergence behavior for all the schemes mimics that for the duct flow case presented

earlier. The noise in the solutions with the first two limiters will be discussed shortly.

The existence of an exact solution to this problem makes it possible to directly compute

distributions of error throughout the domain.

Figure 7 contains contour plots of density error for the medium triangular and quadrilateral

meshes for all the methods. Each contour level indicates 2% error in the local density distribution.

Note that the error contours do not display any anomalies approaching the walls or boundaries,

suggesting that the accuracy near the wall is the same as that in the interior of the field.

By comparing the error in the discrete solutions on a successively refined sequence of tele-

scoping meshes, quantitative measurements of both order of accuracy and absolute error are

possible. Note that since the simulations were run to convergence, the error measured is r -t

directly truncation, error but rather the error in the discrete solutions. The Appendix tabulates

the LI and L2 norm of the density error in the discrete solutions on all the meshes considered in

this example. In addition, it offers order of accuracy estimates for the procedures on each type

of polygon. In general, the L, and L2 norms behave quite similarly, and the order of accuracy

of the discrete solutions is roughly the same in using either measure. Since the L2 norm is more

sensitive to extrema, this fact suggests that discretization error is being driven out of the domain

uniformly, and supports the contention that the boundaries are free from anomalies. Selected data

will be extracted from these tables to aid in the analysis of the following sections.

3.2.2 Polygon Degree

The first investigation examines the influence of the shape and degree of the polygons in the

domain on the accuracy of the discrete solutions. Since results free from the effects of limiters
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are sought, the simulations are started from the exact solution, and discrete solutions are obtained

without the use of flux limiters. The order of accuracy of the discrete method is assessed by

performing a linear regression on log-log plots of absolute density error in both L, and L2 norms

versus normalized grid spacing represented by the reciprocal square root of the number of nodes

in the domains. Figure 8 presents the order of accuracy of the methods in LI, and Table A.1 in

the Appendix contains the data used to generate this chart.

In this example, both the order of accuracy, and absolute error on the quadrilateral and

equilateral triangular tessellations are comparable. The order of accuracy on these two meshes is

5-10% better than that on the right triangular mesh with either reconstruction procedure. The first

order results show a more pronounced deficit, placing the order of accuracy of the right triangular

mesh at about 0.7 as compared to 1. 1 and 1.0 for the quads and equilateral triangles, respectively.

This fact suggests that something in the very nature of the right triangles is responsible for the

lower order of accuracy on such meshes.

The sketches in Figure 9 permit a direct comparison of the dual meshes on quadrilateral and

right triangular tessellations. In examining this figure it becomes apparent that the face a, which

is pierced by the edge LR is at a right angle a on the quadrilateral mesh but not on the stretched

triangular mesh. (Note that Figure 2 shows that a is a right angle on equilateral triangular meshes

as well.) In fact, as the mesh stretching increases, the alignment of faces like a, b, d, and e with

their respective edges becomes less and less orthogonal.

When the first order essentially I-D scheme evaluates the flux across a poorly aligned face,

like a, the Riemann solver expects data normal to the face, but the data provided by either vertex

of edge LR is far removed from the true normal, and necessarily introduces an error into the flux

evaluation. On unskewed quadrilateral meshes, or equilateral triangular meshes a is very nearly a

right angle. As a result, the data introduced into the approximate Riemann solver is well aligned

with the normal to the face, and such an error is avoided. Such arguments support the hypothesis

that the first order scheme may degrade rapidly on highly stretched right triangular meshes.
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When linear reconstruction is introduced into the formation of the numerical flux, the new left

and right states for the Riemann problem are now formed on either side of face a in Figure 9. These

states are labeled L' and R' in the sketch and take into account linear variation within the auxiliary

cell. An alternate view of the situation is to realize that the reconstruction step has taken data

into account from all of the distance one vertices adjacent to L and R, thus enlarging the stencil

to permit information to propagate in the face-normal direction. Since there is no direct edge

connection normal to face a, the first order scheme necessarily makes an error when propagating

information against the mesh diagonal. Reconstruction allows the higher order scheme to recover

more than the single order of magnitude associated with the slope estimation and very nearly

matches the discrete solutions of the quadrilaterals and equilateral triangles. By enlarging the

stencil to incorporate data in the face-normal direction, reconstruction reduces the misalignment

of the Riemann problem present in the first order discrete solutions.

Some general comments stem from this investigation with the unlimited schemes on regular

meshes. (1) On regular meshes the Green-Gauss and least squares gradient estimation procedures

yield similar results. (2) The regular quadrilateral and equilateral meshes yield very similar

discrete solutions, both in order of accuracy, and absolute magnitude of the error. Nevertheless,

the simulations on quadrilaterals require approximately 50% less storage and CPU simply by

virtue of the fact that fewer edges exist in the domain. (3) The scheme seems to treat right

triangles as distorted equilateral triangles, and increases the reliance on the gradient estimation

for the production of accurate discrete solutions.

3.2.3 Limiter Behavior

The next set of numerical examples introduces the slope limiters into the simulations on the

three sets of regular meshes previously presented. This investigation is designed to quantitatively

compare the effects of limiting on scheme accuracy with each of the three polygons types.

As mentioned earlier, the limiter originally proposed for the scheme [1] is a scalar correspond-
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ing to the severest requirement which maintains monotonicity. The directional implementation

of this limiter was presented in Section 2.2 and is designed to reduce the severty of the limiting

by decreasing only the normal component of the gradient. The third limiter examined was re-

cently proposed by Venkatakrishnan (7]. This smooth limiter is less severe, and is invoked less

frequently than Barth's original limiter.

After converging numerical simulations on the medium quadrilateral mesh for about 10, 000

iterations to reach a steady state, the behavior of the limiter with each scheme was monitored

for several hundred iterations. Table 1 contains an excerpt from this data and tracks the mean

behavior of each limiter for several iterations. The first two columns display the percentage of

all edges within the domain on which the limiter was applied for each reconstruction method.

The last two columns tabulate the average value of the limiter on only those faces where the

limiter was active, thus giving a picture of the severity of the limiting taking place. Of course,

since the discrete answers are slightly different, the edges with flux evaluations that invoke the

limiter are not always the same from solution to solution. The lack of absolute convergence

with Barth's limiter is immediately apparent in the first two columns as the number of limited

edges changes from time step to time step but hovers around 17%. The average value of the

limiter on these edges is around 0.25 indicating a very nearly first order flux evaluation on these

edges. Applying this limiter only to the normal component of the gradient substantially reduces

the magnitude of the slope degradation as shown by the tabulated results with the directional

limiter. With this vector application of Barth's limiter, the limited slopes retain 92 - 94% of their

magnitude and monotonicity is still guaranteed. The fact that the exact number of limited edges

is now substantially more stable gives evidence of the deeper convergence afforded by the milder

limiting. Venkatakrishnan's limiter is designed to fire less frequently, and this table shows that

with K = 10 it is triggered on only 5 - 6% of the edges depending on the reconstruction, and

reduces the slopes by an average of only 2 - 3%.

Figure 10 summarizes the effects of limiting on the order of accuracy with the regular
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Table 1: Table showing severity and frequency of limiter firing after practical convergence -
average values on medium mesh for supersonic vortex flow

Darth's limiter

% edges limited Me=nW
GO LS GO LS

1832677 16.62402 0.2444862 0.2487914
17.01772 15.99409 0.2593847 0.2473031
16.63386 18.34646 0.2549107 0.2249657
19.19291 16.70275 0.2311892 0.2505058
17.70669 15.86614 0.2648712 0.2523419
16.80118 17.42126 0.2390375 0.2494676
18.58268 15.75787 0.2293676 0.2628614
17.14567 15.59055 0.2513207 0.2806488
16.68307 17.02756 0.2457611 0.2357707
18.24803 15.93504 0.2329683 0.2580887

Direcionai lmit'm

% edges limited Mame
GG LS GG LS

24.72441 24.58661 0.9240345 0.9457827
24.72441 24.57677 0.9240335 0.9457660
24.72441 24.57677 0.9240359 0.9457663
24.72441 24.57677 0.9240357 0.9457676
24.72441 24.55709 0.9240360 0.9457363
24.72441 24.56693 0.9240357 0.9457521
24.72441 24.56693 0.9240364 0.9457527
24.72441 24.56693 0.9240357 0.9457538
24.72441 24.54725 0.9240348 0.9457356
24.72441 24.56693 0.9240317 0.9457530

Venkabarlhan lmitet, K =10

% edges limited Mean W
GG LS GG LS

6.072834 4.970472 0.9779245 0.9867367
6.072834 4.970472 0.9779246 0.9867366
6.072834 4.970472 0.9779246 0.9867365
6.072834 4.970472 0.9779242 0.9867367
6.072834 4.970472 0.9779242 0.9867365
6.072834 4.970472 0.9779242 0.9867368
6.072834 4.970472 0.9779245 0.9867368
6.072834 4.970472 0.9779246 0.9867369
6.072834 4.970472 0.9779245 0.9867367
6.072834 4.970472 0.9779245 0.9867367
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meshes of each polygon shape. These results summarize the data contained in Table A.2 in the

Appendix which presents both error norms and order of accuracy estimates. Figure 10 shows

that Venkatakrishnan's limiter nearly reproduces the behavior of the unlimited schemes for this

smooth flow. This is consistent with the high values of the limiter observed in Table 1.

In cases with no limiting, or with very little limiting - as with Venkatakrishnan's limiter - the

right triangular elements almost match the accuracy of the other two tessellations. However, this

has come from an increased reliance on the gradient estimation. The behavior with the directional

limiter provides a good demonstration of this. When the gradient at L or R is decreased due to

limiting, the stencil will again revert to the poorly aligned first order Riemann solution and the

propagation of information will be restricted. Thus, the reconstructed values at the cell face will

degrade rapidly. In Equation 2.13, accurate estimations of 4,. rely ever more heavily on v4
since Ovo represents data not normal to the face. Thus, limiting v4' will degrade the discrete

solution more severely than on well aligned meshes. On the finest right triangular mesh with the

directional limiter the error is nearly 10 times that on the equilateral triangles or quadrilaterals

with the same limiter (see Table A.2 in Appendix).

3.2.4 Polygon Quality

While it is informative to evaluate the scheme performance on the meshes in the previous inves-

tigation, such smooth, regular, aspect ratio -, 1 polygons are rarely found in practice. Having

established a reference level for scheme accuracy, focus now shifts to discrete solutions on

stretched and distorted meshes.

Figure 11 displays two sets of telescoping stretched meshes. The quadrilateral and triangular

elements were formed on the same set of vertices and the aspect ratio of the (quadrilateral)

elements is about 40. The original scalar limiter, and the directional limiter refused to converge

on the coarse and medium triangular meshes for this case, so Table A.2 in the Appendix only

contains results with the first order scheme and Venkatakrishnan's limiter.
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Figure 12 contains a comparison of the order of accuracy information derived from the

tabulated data. The first order results place the order of accuracy on the quadrilateral cells at

0.93 and the right triangular scheme at only 0.41. Such results are consistent with the argument

presented earlier which predicted that the alignment problem becomes worse with increasing cell

aspect ratio.

At first glance, the improvement in order of accuracy for the reconstructed solutions on the

triangular grid is very impressive. Although the order of accuracy is still 5 - 10% lower than

on the quadrilateral meshes, reconstruction has improved the solution by more than a full order

of magnitude. However, after examining the data in Table A.3, it is clear that even on the finest

mesh, the discrete solutions on the right triangular mesh exhibit 4 - 10 times more error than on

the quadrilateral tessellation of the same set of nodes. Despite this, the discrete solutions on the

fine triangular mesh are quite reasonable, and on a sufficiently fine mesh, the gradient estimation

is able to compensate for the error in the first order scheme.

The right triangle's increased dependency on the accuracy of the gradient estimation becomes

apparent when studying the behavior of the discrete solutions on the coarse meshes. On these

meshes, only 5 points spanned the domain in the streamwise direction. The resulting gradient

estimates led to discrete solutions which are actually worse than the first order simulations. On

the quadrilateral meshes, similar gradient estimates improved the discrete solutions by a factor of

2-6.

Finally, in regarding Table A.3, note that the discrete solution on the right triangular mesh using

least squares reconstruction converged to a result which unstarted the flow. Since it converged

to a different physical solution, this point was not considered in the slope estimate provided

in the table. The results for this test case appear to substantiate observations made previously.

However, the schemes poor performance on the coarse right triangular mesh suggests that they

should be regarded as preliminary until the results can be substantiated by computations on still

finer stretched meshes.

33



DSDistorted

Quadrilateral Mash

1.0 11.

o•Distorted
tTriangular Mes

0.0 0O6 1.0

Figure 13: Sequences of randomly distorted meshes used for supersonic vortex

34



5.--------------------------------------------------------------

S.*.. r-3 Distorted Quads
Distorted Triangles

72
0 0.5 -------

E First order Barth (GG) Dir )nal Venkatsh- Venkatakrish- Strured
,t nan (GG) nan (LS)

Figure 14: Order of accuracy of limited schemes on randomly distorted polygons for the su-

personic vortex problem

35



In order to examine the schemes tolerance to distorted elements, the regular meshes shown

in Figure 5 were perturbed to introduce localized skewing. Figure 13 displays the resulting

distorted meshes. Each mesh point was randomly displaced within a small region of its local

neighborhood. The resultant sets of nodes were then connected to form both quadrilateral and

triangular polygons. Notice that these meshes do not telescope, since the magnitude of the mesh

point displacement scales with the normalized mesh spacing.

Figure 14 compares the estimated order of accuracy for each discrete method on the two poly-

gon types. Tids chart is again drawn from the information provided in the Appendix (Table A.4).

The chart displays a clear degradation in accuracy on the quadrilateral meshes. The triangular

elements, in contrast, produce results which nearly match those on regular equilateral triangles

presented earlier. Table A.4 shows that, in general, somewhat higher discretization error exists

on the distorted triangular meshes. However, this table also shows that the least squares cases are

extremely tolerant to the mesh distortion and the error in these solutions is very nearly as low as

that on the regular triangular meshes.

These observations support several general statements about the method's performance on

distorted polygons. It appears that on both tessellations, the least squares gradient estimation is

far more capable of producing reliable results on distorted meshes. Moreover, its also evident

that the trapezoidal integration of the Galerkin portion of the numerical flux function on triangles

makes these polygons far more tolerant of mesh distortion. The order of accuracy on the distorted

quadrilateral meshes degenerates much more quickly, since the edge formulas only result in

midpoint quadrature for these polygons. Notice however, that the absolute magnitude of the error

on all of the quad meshes remains very low which suggests that the coefficient of the discretization

error expression remains small.
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3.3 External Inviscid Flow - Transonic NACA 0012 Airfoil

Transonic, inviscid flow past a NACA 0012 airfoil poses a challenging and realistic problem on

which to verify the features of the various algorithms discussed in the preceding sections. Mach

0.8 flow at an angle of attack of 1.250 results in a steady solution with a slip line at the trailing

edge, a strong shock on the suction surface, and a weak shock on the pressure side. The upper and

lower frames on the left of Figure 15 show the quadrilateral and triangular meshes (respectively)

used in the simulation. The remainder of this figure contains a sampling of typical results for

several combinations of limiter and reconstruction method. Results on the quadrilateral control

volumes are displayed above the discrete solutions on the triangular meshes.

The mesh employed in this example consists of 131 x 65 vertices, and the circumferential

resolution was chosen such that the lower shock just formed when using the Green-Gauss recon-

struction in conjunction with Venkatakrishnan's limiter, on the quadrilateral mesh. The second

column in Figure 15 contains the first order discrete solutions on each mesh. As in the previous

examples, the first order triangular scheme produces a result which appears more diffuse than that

on the quad mesh. The triangles near the surface are very nearly right triangles with an aspect

ratio of roughly 10, and the most likely explanation is again poor alignment of the Riemann solver.

The last 2 columns of Figure 15 display reconstructed solutions using the directional limiter

with Green-Gauss and Venkatakrishnan's limiter with least squares. Reconstruction dramatically

improves the quality of the discrete solutions not only because of the higher order of accuracy

of the resulting scheme, but also as a result of the extended support stencil used in forming the

Riemann problem. Ultimately, the discrete solutions on the two meshes are extremely close.

In fact, with Venkatakrishnan's limiter and least squares reconstruction, the solutions with the

quadrilaterals and the triangles are very nearly indistinguishable and the lift coefficients match to

3 significant digits.

The C, plots in Figure 16 provide a more quantitative assessment of the different schemes.

This figure contains the results from all tested combinations of limiter and reconstruction method.
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Also included for reference are results from a cell-centered structured Roe/MUSCL solver [21].

The profiles are strongly dependent upon the capturing of the weak lower shock. Less accurate

methods fail to predict this shock and represent it as simply a smooth compression. With the

exception of the structured mesh results, hollow squares denote data with the quadrilateral meshes,

while filled triangles represent the triangular elements.

In the first order solutions, only the quadrilateral mesh gives any indication of the lower

shock's existence. On either of these meshes, the original scalar limiter fails to predict the shock

as well. Indeed, these results did not converge convincingly, and the residual stalled after dropping

approximately 3 orders of magnitude. The directional implementation of this limiter reduced the

residual by an additional two orders, and the lower shock is evident in the discrete solutions on

both tessellations. As in the previous examples, Venkatakrishnan's limiter converges to machine

zero, but over/undershoots appear in all the examples.

The behavior of the two reconstruction methods follows the same trends as in the shockless

flows considered earlier. Least squares appears to produce more accurate gradient estimates, and

the advantage is particularly evident on the triangular meshes. This method also shows a reduced

sensitivity to polygon shape because it more appropriately weights the data surrounding a vertex.

On triangular meshes formed by division of quadrilaterals, the Green-Gauss reconstruction may

actually introduce a diagonal bias, while the least squares reduces the weighting of these points

due to their distance from the central vertex. On none of these relatively smooth grids did

the additional edge calculations present on the right triangular meshes resul n any apparent

advantage.
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4. Conclusions

The accuracy and efficiency of a variety of common edge-based reconstuction schemes are

examined on unstructured meshes with various limiters and types of polygons. For meshes with

cell aspect ratios near one, the accuracy of the discrete solutions on triangles and quadrilaterals

is nearly the same in both order and absolute magnitude. Right triangular elements, however,

appear to be viewed as distorted equilateral triangles - with an associated reduction in scheme

accuracy which is particularly severe in the piecewise constant, first order scheme. The situation

is exacerbated when the mesh is stretched to produce high aspect ratio elements and the Riemann

solver is more poorly aligned with the edge which introduces the first order data. Higher-order

calculations on such meshes rely on the reconstruction to extend the support of the first order

stencil. This results in an increased burden on the gradient estimation, and makes them easily

degraded by limiting. Even when the reconstruction helps recover the loss in order of accuracy,

the absolute level of error in the discrete solutions remains a factor of 5-10 higher than on the

quadrilateral meshes. The fact that quadrilaterals are not rigid figures makes it possible to stretch

these cells without introducing skewing, and elevated cell aspect ratio does not degrade these

discrete solutions. Nevertheless, on poor quality meshes, the midpoint integration and smaller

support stencil of the quadrilateral meshes combine to make the discrete solutions degenerate

more rapidly.

A new directional implementation of Barth's original scalar limiter is introduced which pre-

serves the cell average and retains monotonicity. This approach limits only the component of

the gradient normal to the face. Numerical experiments show that this implementation signif-

icantly reduces the dissipation introduced by the original scalar procedure. Venkatakrishnan's

smooth limiter performs as expected and converges for all test cases while producing small

over/undershoots in the discrete solutions. A very promising approach toward further reducing

the introduction of excessive dissipation into the solutions may be the directional implementation
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of Venkatakrisbnan's limiter.

On regular and stretched meshes, the additional edges in the biangular meshes do not lead to

any apparent accuracy advantage over the quadrilateral scheme. These additional edges, however,

do mandate 50% higher (in 2-D) storage and CPU requirements (over 200% in 3-D) - simply by

virtue of the tessellation and the fact that the scheme proceeds on an edge basis. These observations

support a possible mesh generation strategy which removes unnecessary edges from boundary

layer regions and other regular portions of an unstructured tiangular mesh, and processes such

regions as a collection of mixed quadrilateral and triangular elements.
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